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Part 1 — The program, CFG, and
the bug



Example program

1 int foo(const char *user, int n, int flag) {
2 char buf[16];
3 int len = n;
4
5 if (len < 0) len = -len;
6
7 if (flag) len = len + 4;
8 else len = len - 2;
9

10 if (0 < len ^& len < 32) {
11 int i = 0;
12 while (i < len) {
13 buf[i] = user[i];
14 i^+;
15 }
16 buf[i] = '\0';
17 } else {
18 strcpy(buf, "ERR");
19 }
20 return (int)buf[0];
21 }
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CFG (control-flow graph)

Entry

len = n

len < 0?

len = -len len unchangedflag?

len = len + 4 len = len - 20 < len
len < 32?

strcpy(buf,”ERR”) i = 0
i < len?

buf[i] = user[i];
i++buf[i] = ’\0’

Return

yes no

true false

no yes

yesno
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Side-by-side

Write happens here:

while (i < len) {
buf[i] = user[i]; ^/ i is NOT bounded by 16
i^+;

}
buf[i] = '\0'; ^/ also writes at index i

Why it overflows: buf has valid indices 0^.15, but i can reach
16^.31.

Concrete failing scenario: len = 20 → loop writes buf[16],
buf[17], … (stack smash territory)
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Part 2 — Symbolic execution



Metaphor: two ways to “run” a program

• Concrete execution: you watched one person’s walk.

• Symbolic execution: you tracked every possible walk, but
had to do forking at every branches.
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Symbolic execution: core idea

Replace inputs with symbols:

• N for n
• F for flag (boolean)

Track a symbolic state:

• symbolic store (expressions for variables)
• path condition PC (constraints that must hold)

At each branch:

• fork states and add constraint (cond / !cond)
• use an SMT solver to check feasibility and (optionally)

produce a model (test input)
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Symbolic setup for this program

Entry

len = n

len < 0?

len = -len len unchangedflag?

len = len + 4 len = len - 20 < len
len < 32?

strcpy(buf,”ERR”) i = 0
i < len?

buf[i] = user[i];
i++buf[i] = ’\0’

Return

yes no

true false

no yes

yesno
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But… the loop makes symbolic execution blow up

Inside the while (i < len):

• each iteration hits a branch (i < len)

• if len is symbolic, the executor conceptually explores:
• paths with 0 iters, 1 iter, 2 iters, … up to many iters

• if nested loops / multiple branches exist: it’s exponential
(“path explosion”)

This program is small; real code has:

• multiple loops, function calls, recursion
• complex conditionals
• library modeling gaps

So we ask: can we avoid enumerating every route?
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But… the loop makes symbolic execution blow up

1 int foo(const char *user, int n, int flag) {
2 char buf[16];
3 int len = n;
4
5 if (len < 0) len = -len;
6
7 if (flag) len = len + 4;
8 else len = len - 2;
9

10 if (0 < len ^& len < 32000000000) {
11 int i = 0;
12 while (i < len) {
13 buf[i] = user[i];
14 i^+;
15 }
16 buf[i] = '\0';
17 } else {
18 strcpy(buf, "ERR");
19 }
20 return (int)buf[0];
21 }
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Common “symex” mitigations (still not a silver bullet)

• Bounded exploration (loop unrolling limit)
• predictable, − can miss deep bugs

• State merging (merge paths at join points)
• fewer states, − constraints become harder / less precise

• Heuristic path search (coverage-guided, BFS/DFS hybrids)
• finds bugs faster, − completeness suffers

• Concolic execution (concrete + symbolic)
• scalable-ish, − can still miss paths

This motivates a different idea: don't track exact formulas
per path
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Part 3 — Abstract interpretation:
stop chasing paths



Abstract interpretation: core idea

Symbolic execution tracks exact expressions per path.

Abstract interpretation tracks summaries over sets of states.

• Instead of: len = (N ^= 0 ? N : -N) + 4
• You might track: len ∈ [1, 31] on the then-branch

You trade:

• precision (exactness) ↓
• for scalability and guarantees (soundness) ↑
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Metaphor: “weather map analysis”

• Concrete execution: you watched one person’s walk.
• Symbolic execution: you tracked every possible walk, but

had to fork at every branch.
• Abstract interpretation: you publish a weather map:

“anyone walking here will experience temperatures in [20°C,
30°C].”

You lose exact trajectories, but you can cover the whole city.
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The math-y skeleton (without drowning in it)

We define:

• a concrete domain C (all real program states)
• an abstract domain A (compact summaries)

With maps:

• abstraction 𝛼 ∶ 𝑃(𝐶) → 𝐴
• concretization 𝛾 ∶ 𝐴 → 𝑃(𝐶)

We compute a sound over-approx:
AbstractResult describes a set of states that includes
all real reachable states.

That’s why abstract interpretation is great for “prove no overflow’’
(when it succeeds).
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Worklist algorithm (forward dataflow)

We compute an invariant at each CFG node.

Initialize IN[n] = �, OUT[n] = �
IN[entry] = initial abstract state

worklist = [entry]
while worklist not empty:

p = pop(worklist)
OUT[p] = transfer(p, IN[p])
for each successor s of p:
newIN = IN[s] � OUT[p] ^/ join
if newIN ≠ IN[s]:
IN[s] = newIN
push(s)

For loops: iteration may not terminate → we use widening to
force convergence.
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Worklist algorithm (forward dataflow)

Entry

len = n

len < 0?

len = -len len unchangedflag?

len = len + 4 len = len - 20 < len
len < 32?

strcpy(buf,”ERR”) i = 0
i < len?

buf[i] = user[i];
i++buf[i] = ’\0’

Return

yes no

true false

no yes

yesno
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Interval domain (our abstract domain)

For each integer variable x, track an interval:

• 𝑥 ∈ [𝑙, 𝑢] where l and u can be −∞, +∞
Key operators:

• join: [l1,u1] � [l2,u2] = [min(l1,l2), max(u1,u2)]

• add: [l,u] + k = [l+k, u+k]

• sub: [l,u] - k = [l-k, u-k]

• guard refine:
• for x < c, intersect with [-∞, c-1]
• for x > c, intersect with [c+1, +∞]

Intervals are fast—but they forget correlations (e.g., they don’t
remember i < len very precisely).
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Set up analysis assumptions (so intervals can run)

We need an input range to analyze “all at once”. Example (typical
in static analysis):

• n ∈ [-∞, +∞]
• flag ∈ {0,1}

We’ll focus on key variables: len, i.
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Interval propagation (key program points)

Entry

len = n

len < 0?

len = -len len unchangedflag?

len = len + 4 len = len - 20 < len
len < 32?

strcpy(buf,”ERR”) i = 0
i < len?

buf[i] = user[i];
i++buf[i] = ’\0’

Return

yes no

true false

no yes

yesno
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Why this scales better than symbolic execution (intuition)

• Symbolic execution: cost grows with #paths (and loop
iterations)

• Abstract interpretation: cost grows with #CFG nodes ×
domain ops

• you iterate to a fixpoint
• you summarize many paths into one invariant per node

So you “pay per node,” not “pay per path.”
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Part 4 — Where abstract
interpretation struggles



Failure mode #1: widening → coarse invariants (false alarms)

To ensure termination on loops, analyzers apply widening:

• if a bound keeps increasing, jump to +∞ (or a large summary)

Example (safe-ish structure, but widening can lose it):

int i = 0;
while (i < len) { ^/ len unknown, might be bounded elsewhere

i^+;
}
if (i < 16) {

buf[i] = 'A'; ^/ safe whenever i < 16
}

If widening turns i ∈ [0, +∞) at loop head:

• the analyzer can’t prove i < 16 is reachable/safe precisely
• you may get a warning even if upstream logic actually bounds

len ≤ 15

Moral: widening buys termination, but can trade away precision.
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Failure mode #2: bit operations don’t fit the domain

Intervals are bad at bit-level reasoning unless you add custom
transfer rules.

Example:

uint32_t idx = x & 0xF; ^/ idx is ALWAYS 0^.15
buf[idx] = 'A'; ^/ safe

A naïve interval analyzer might know:

• x ∈ [0, 2^32-1] …but not know how & 0xF constrains
values, so it may approximate:

• idx ∈ [0, 2^32-1] (terrible) → false alarm.

Fix: use a domain that models bitmasks / congruences / modular
arithmetic, or add bit-precise reasoning.
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Part 7 — How AI can help (without
magic)



Where AI can plug in (practical angles)

1. Better heuristics for symbolic execution
• learn which branches / paths are likely to reach “dangerous

sinks” (memcpy, buffer writes)
• prioritize solver calls that maximize coverage or bug likelihood

2. Invariant suggestion / refinement
• propose candidate invariants (e.g., len ≤ 15) that a prover

can check
• help choose predicates for CEGAR-style refinement

3. Domain selection / hybrid analysis
• detect “bit-heavy” code and switch to a more suitable abstract

domain
• or combine: abstract interpretation to prune, symbolic

execution for precision (“meet in the middle”)

4. Learned transfer functions (carefully)
• for patterns like masking (& 0xFF), shifts, saturating

arithmetic
• still validated by sound checks / testing (AI proposes; analysis

verifies)
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Takeaways (what to remember)

• Symbolic execution:
• path-based, constraint-based
• great for concrete counterexamples
• struggles with path explosion

• Abstract interpretation:
• summary-based, fixpoint-based
• great for scalability and sound over-approx
• can lose precision (widening, domain mismatch)

• In practice: strong tools mix both—and AI can help decide
where and how.
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