
COMS 4995 - AI for Software Security
How Traditional Static Analysis Works, and Why/When It
Fails

Zhuo Zhang
Jan 27, 2026

1

Today’s goal

• Build intuition for static program analysis

• Learn the core program representations:
• AST, CFG, Call graph

• Then: 3 classic analyses + failure modes + how AI helps
• Source → sink (taint/dataflow): null deref
• Abstract interpretation (intervals): buffer overflow
• Symbolic execution: deep bug trigger inputs

2

Static analysis in one sentence

“Reason about program behavior without running it.’’

3

The 3-way tradeoff (remember this)

You usually can’t maximize all three:

• Soundness (no missed bugs)
• Precision (few false alarms)
• Scalability (fast enough for real code)

4

Why failure is inevitable

Halting Problem:

• you can’t build a program that always tells whether another
program will ever stop or run forever.

5

Why failure is inevitable (Cont 1)

Why halting problem is undecidable?

1. Pretend we have a magic tool that can always tell whether
any program will eventually stop.

2. Use that tool to build a “trick’’ program that deliberately
does the opposite of what the tool predicts about itself.

3. When the trick program analyzes itself, the prediction is
forced to be wrong, showing such a tool cannot exist.

6

Why failure is inevitable (Cont 2)

Many program analyses aim to answer:

• “Does this program ever reach line X?’’

• “Can this loop terminate?’’

These can be reduced to answering a halting problem instances.

7

Why failure is inevitable (Cont 3)

So: tools approximate.

8

Pipeline overview (what tools actually do)

Typical static analyzer pipeline:

1) Parse → AST

2) Lower to IR → build CFG

3) Add interprocedural info → call graph

4) Run analyses (dataflow / abstract interpretation / symbolic
exec variants)

5) Report warnings

9

Checkpoint poll

Which one feels most mysterious?

A) AST

B) CFG

C) Call graph

D) “why it lies’’

10

AST: what it is

AST = Abstract Syntax Tree

• Tree structure of “what the programmer wrote”
• Captures precedence, nesting, blocks, etc.
• Not about execution order (that’s CFG)

11

Tiny C expression

int y = a + b * c;

Quick: does + or * bind tighter?

12

AST sketch for a + b * c

(=)
/ \

y (+)
/ \

a (*)
/ \
b c

13

In-class Q1: which AST matches?

Code:
(a + b) * c;

14

In-class Q1: which AST matches? (Options)

A)
(+)
/ \
a (*)

/ \
b c

15

In-class Q1: which AST matches? (Options)

B)
(*)
/ \

(+) c
/ \
a b

16

In-class Q1: which AST matches? (Options)

C)
(*)
/ \

a (+)
/ \
b c

17

Q1 answer

Correct: B

(*)
/ \

(+) c
/ \
a b

18

AST: statements add structure

int f(int x) {
int y = 0;
if (x > 0) y = 1;
else y = 2;
return y;

}

19

AST sketch (statements)

Function f
Params: x
Block
Decl y = 0
If (x > 0)
Then: Assign y = 1
Else: Assign y = 2

Return y

20

In-class Q2: what’s NOT in AST?

A) operator precedence

B) nested blocks

C) “next executed statement’’ edges

D) which variable is assigned

21

Q2 answer

Correct: C

Execution order edges live in the CFG.

22

A fun AST gotcha (C)

if (x)
if (y) z();
else w();

Question: which if does the else belong to?

23

The “dangling else’’ rule

In C: else matches the nearest unmatched if.

So it parses like:
if (x) {

if (y) z();
else w();

}

24

If you want different grouping:

if (x) {
if (y) z();

} else {
w();

}

25

CFG: what it is

CFG = Control Flow Graph

• Models possible execution order

• Nodes: basic blocks (straight-line sequences)

• Edges: possible jumps (branches, loops, returns)

26

Same function; now think CFG

int f(int x) {
int y = 0;
if (x > 0) y = 1;
else y = 2;
return y;

}

27

Basic blocks (typical)

• B1: y=0; if (x>0) goto B2 else goto B3

• B2: y=1; goto B4

• B3: y=2; goto B4

• B4: return y

28

CFG sketch (ASCII)

+----------+ true +------+
| B1 |------------^>| B2 |
| y=0 | | y=1 |
| if (x>0) | +--+---+
+--+-------+ |

| |
| false |
v v

+------+ +------+
| B3 |----------------^>| B4 |
| y=2 | |ret y |
+--+---+ +------+

29

In-class Q4: CFG vs AST?

?

30

In-class Q4: CFG vs AST? (Cont)

A) captures execution order

B) tree → graph

C) introduces back edges for loops

31

CFG exercise: a loop

int sum_to(int n){
int s = 0;
for (int i=0; i<n; i^+){
s += i;

}
return s;

}

Where is the back-edge?

32

Loop CFG sketch (ASCII)

[Entry]
|
v
(s=0; i=0) ^> i<n? --- false ^> [return s]

^ |
| | true
| v

(s+=i; i^+)

33

In-class Q5: “basic block’’ means…

A) one statement per node

B) no internal branches except at end

C) only functions, not loops

D) only for assembly

34

Q5 answer

Correct: B

35

Call graph: what it is

Call graph = possible calls between functions

• Node: function
• Edge: “may call’’

Great for interprocedural analysis (across functions).

36

Easy case: direct calls

int g(int);

int f(int x){ return g(x) + 1; }
int g(int y){ return y*y; }

Call graph edge?

37

Answer

f → g

38

Hard case: function pointer

int add1(int x){ return x+1; }
int add2(int x){ return x+2; }

int (*pick(int k))(int){
if (k) return add1;
else return add2;

}

int h(int k, int v){
int (*fp)(int) = pick(k);
return fp(v);

}

What edges must be included conservatively?
39

Conservative call graph edges

At least:

• h → pick

• h → add1

• h → add2

Because fp(v) could call either target.

40

In-class Q6: why is call graph hard?

A) recursion

B) indirect calls (function pointers / dynamic dispatch)

C) whitespace sensitivity

D) constant folding

41

Q6 answer

Correct: B (recursion is fine; indirect calls are the real pain)

42

Mini recap checkpoint

Match representation to question:

• AST answers: “how is code structured syntactically?’’

• CFG answers: “what order might statements execute?’’

• Call graph answers: “which functions might be called?’’

43

Now we hunt bugs

We’ll start with a bug class that feels concrete:

• Null pointer dereference

We’ll turn it into a source → sink problem.

44

Bug hunt #1: spot the crash

#include <stdio.h>
#include <stdlib.h>

char *read_name(FILE *f){
char *p = malloc(16);
fgets(p, 16, f);
return p;

}

int main(){
FILE *f = fopen("names.txt","r");
char *s = read_name(f);
printf("%c\n", s[0]);

}

Where can it crash? (list all spots)
45

Likely crash points

• fopen may return NULL → f null passed to read_name

• s may be NULL if read_name returned NULL (or if it
propagates)

• s[0] deref is a sink

46

Source vs sink (make it a game)

Define:

• Sources: expressions that may produce NULL (e.g., malloc,
fopen, getenv, many APIs)

• Sinks: operations requiring non-null *p, p^>x, p[i],
memcpy(p,^^.), etc.

Goal: detect source → sink flow without check.

47

Taint-style view (null-taint)

We’ll use a taint metaphor:

• value is nullable-tainted if it may be NULL

• taint propagates through assignments and returns

• checks may “sanitize’’ (on some paths)

48

Dataflow (toy rules)

On CFG:

• x = malloc(^^.) → x becomes nullable

• x = y → x nullable if y nullable

• if (x ^= NULL):
• on true branch, treat x as non-null

• sink x[0] → warn if x may be null on that path

49

Sensitivity (static analysis)

Sensitivity is how much the analysis distinguishes different
situations

• Flow sensitivity
• Path sensitivity
• Context sensitivity

50

Flow sensitivity

Flow sensitivity: distinguishes facts at different program points

Statement order matters!

51

In-class Q7: flow sensitivity

If analysis is flow-insensitive, it:

A) tracks facts per program point

B) ignores statement order (one big soup)

C) always considers paths separately

D) requires SMT solvers

52

Q7 answer

Correct: B

Flow-insensitive = ignores order → often much less precise.

53

Path sensitivity

Path sensitivity: distinguishes facts on different branches/paths

Conditions matter!

54

In-class Q8: path sensitivity

Given:
p = malloc(16);
if (p) p[0] = 'A';

A path-insensitive analysis that merges facts will likely:

A) warn

B) not warn

C) crash itself

55

Q8 answer

Often A (warn)

Because merging keeps “p may be null’’ even inside the guarded
block (depending on tool design).

56

A cleaner null example (with early return)

char *p = malloc(16);
if (!p) return NULL;
p[0] = 'A';

A path-sensitive analysis should: warn or not?

57

Answer

Should not warn at p[0] if it understands that path implies p ^=
NULL.

58

Interprocedural challenge

char *mk(){ return malloc(1024 * 1024 * 1024); }

void use(char *q){ q[0] = 'X'; }

int main(){
char *p = mk(); use(p);

}

To warn, the analyzer must connect:

• return value of mk to argument of use

59

Summaries (the key idea)

Interprocedural dataflow often uses function summaries:

• mk: “returns nullable’’
• use: “requires non-null q at deref’’

Then check call sites.

60

Context sensitivity

Context sensitivity: distinguishes facts under different calling
contexts.

Same function called from different places is analyzed separately!

61

In-class Q9: context sensitivity

Context-insensitive means:

A) different call sites to same function can be distinguished

B) variables have types

C) loops are unrolled

D) AST nodes have parents

62

Q9 answer

Correct: A

63

Why this analysis fails

We’ll do 4 common ones:

1. aliasing

2. unknown function semantics (“sanitizers’’)

3. path explosion

4. imprecise heap / pointers

64

Failure mode #1: aliasing

char *p = malloc(16);
char *q = p;

^^. ^/ complex code that doesn't change p or q

if (!q) return;
p[0] = 'A';

If tool doesn’t track aliasing well, it might not realize p and q
share nullness facts.

65

Failure mode #2: “sanitizer’’ functions

void check_not_null(void *x){
if (!x) abort();

}

char *p = malloc(16);
check_not_null(p);
p[0] = 'A';

If tool doesn’t know check_not_null semantics, it may warn
incorrectly.

66

Failure mode #3: path explosion

Many branches cause exponential paths:
if (a) {^^.} else {^^.}
if (b) {^^.} else {^^.}
if (c) {^^.} else {^^.}

Even a great path-sensitive idea can become too slow.

67

Failure mode #4: “unknown’’ libraries/environment

p = get_ptr_from_library();
use(p); ^/ deref inside

If the library contract isn’t modeled, analysis is forced to guess:

• assume nullable → false positives
• assume non-null → false negatives

68

Where AI helps (source → sink / null deref)

AI won’t magically make the problem decidable. But it can
improve usefulness:

• Learn common sanitizer patterns

• Infer API contracts (nullable vs non-null)

• Rank warnings (triage 10k → top 20)

• Suggest fixes (“add check here”)

69

AI help #1: warning ranking (triage)

Given many warnings, prioritize likely true positives using:

• code patterns near sink

• historical fixes / repo conventions

• similarity to known bugs

• call context features

70

AI help #2: contract inference

Infer this function never returns NULL'' oraborts on
NULL’’ by:

• analyzing implementation

• learning from usage patterns:
• “everyone checks return value’’ → maybe nullable
• “nobody checks’’ → maybe non-null or people are wrong

71

In-class Q10: AI often does NOT give…

A) better prioritization

B) learned summaries for wrappers

C) guaranteed soundness

D) better UX

72

