COMS 4995 - Al for Software Security

How Traditional Static Analysis Works, and Why/When It
Fails

Zhuo Zhang
Jan 27, 2026

Today’s goal

= Build intuition for static program analysis
= Learn the core program representations:
= AST, CFG, Call graph
s Then: 3 classic analyses + failure modes + how Al helps

= Source — sink (taint/dataflow): null deref
= Abstract interpretation (intervals): buffer overflow
= Symbolic execution: deep bug trigger inputs

Static analysis in one sentence

“Reason about program behavior without running it."”

The 3-way tradeoff (remember this)

You usually can't maximize all three:

= Soundness (no missed bugs)
= Precision (few false alarms)
= Scalability (fast enough for real code)

Why failure is inevitable

Halting Problem:

= you can't build a program that always tells whether another
program will ever stop or run forever.

Why failure is inevitable (Cont 1)

Why halting problem is undecidable?

1. Pretend we have a magic tool that can always tell whether

any program will eventually stop.

2. Use that tool to build a “trick’ program that deliberately
does the opposite of what the tool predicts about itself.

3. When the trick program analyzes itself, the prediction is
forced to be wrong, showing such a tool cannot exist.

Why failure is inevitable (Cont 2)

Many program analyses aim to answer:
= “Does this program ever reach line X?"
= “Can this loop terminate?”

These can be reduced to answering a halting problem instances.

Why failure is inevitable (Cont 3)

So: tools approximate.

Pipeline overview (what tools actually do)

Typical static analyzer pipeline:
1) Parse — AST
2) Lower to IR — build CFG

3) Add interprocedural info — call graph
)

4) Run analyses (dataflow / abstract interpretation / symbolic
exec variants)

5) Report warnings

Checkpoint poll

Which one feels most mysterious?
A) AST

B) CFG

C) Call graph

D) “why it lies”

10

AST: what it is

AST = Abstract Syntax Tree

= Tree structure of “what the programmer wrote”
= Captures precedence, nesting, blocks, etc.
= Not about execution order (that's CFG)

11

Tiny C expression

inty =a+ b % c;

Quick: does + or * bind tighter?

12

AST sketch fora + b * c

13

In-class Q1: which AST matches?

Code:

(a + b) * c;

14

In-class Q1: which AST matches? (Options)

15

In-class Q1: which AST matches? (Options)

16

In-class Q1: which AST matches? (Options)

)

()

/\
a (+)
/\

17

Correct: B

(%)

/\
(+) ¢
/\
a b

18

AST: statements add structure

int f(int x) {

int y = 0;
if (x>0)y=1;
else y = 2;
return y;

19

AST sketch (statements)

Function f
Params: x
Block

Decl y =0
If (x > 0)

Then: Assign y
Else: Assign y
Return y

20

In-class Q2: what’s NOT in AST?

A) operator precedence
B) nested blocks
C) “next executed statement’’ edges

D) which variable is assigned

21

Correct: C

Execution order edges live in the CFG.

22

A fun AST gotcha (C)

if (x)
if (y) zQ);
else w(Q);

Question: which if does the else belong to?

23

The “dangling else’’ rule

In C: else matches the nearest unmatched if.

So it parses like:

if (x) {
if (y) z(Q);
else w(Q);

24

If you want different grouping:

if (x) {

if (y) zO;
} else {

w();
}

25

CFG: what it is

CFG = Control Flow Graph
= Models possible execution order
= Nodes: basic blocks (straight-line sequences)

= Edges: possible jumps (branches, loops, returns)

26

Same function; now think CFG

int f(int x) {

int y = 0;
if (x >0) y = 1;
else y = 2;
return y;

27

Basic blocks (typical)

= Bl: y=0; if (x>0) goto B2 else goto B3
= B2: y=1; goto B4
= B3: y=2; goto B4

= B4: return y

28

CFG sketch (ASCII)

Ho--------- + true +------ +
| B1 [-----mmm - | B2 |
| y=0 I | y=1 |
[if (x>0) | +--t---t
R + |

I I

| false |

v v
e + e +
| B3 |---------------- —| B4 |
| y=2 | ret y |
+--+---+ R +

29

In-class Q4: CFG vs AST?

30

In-class Q4: CFG vs AST? (Cont)

A) captures execution order
B) tree — graph

C) introduces back edges for loops

31

CFG exercise: a loop

int sum_to(int n){
int s = 0;
for (int i=0; i<n; i+){
s += 1i;
}
return s;

}

Where is the back-edge?

32

Loop CFG sketch (ASCII)

[Entry]
|
v
(s=0; i=0) — i<n? --- false — [return s]
n
| | true
| v
(s+=1i; i+)

33

In-class Q5: “basic block’’ means...

A
B

) one statement per node
) no internal branches except at end
C) only functions, not loops

D) only for assembly

34

Correct: B

35

Call graph: what it is

Call graph = possible calls between functions

= Node: function
= Edge: “may call”

Great for interprocedural analysis (across functions).

36

Easy case: direct calls

int g(int);

int f(int x){ return g(x) + 1; }
int g(int y){ return yxy; }

Call graph edge?

37

38

Hard case: function pointer

int add1(int x){ return x+1; }
int add2(int x){ return x+2; }

int (*pick(int k))(int){
if (k) return addi;
else return add2;

int h(int k, int v){
int (*fp)(int) = pick(k);
return fp(v);

}

What edges must be included conservatively?

39

Conservative call graph edges

At least:
= h > pick
= h > addl
= h > add2

Because fp(v) could call either target.

40

In-class Q6: why is call graph hard?

A) recursion
B) indirect calls (function pointers / dynamic dispatch)
C) whitespace sensitivity

D) constant folding

41

Correct: B (recursion is fine; indirect calls are the real pain)

42

Mini recap checkpoint

Match representation to question:
= AST answers: “how is code structured syntactically?"
= CFG answers: “what order might statements execute?"”

= Call graph answers: “which functions might be called?"

43

Now we hunt bugs

We'll start with a bug class that feels concrete:
= Null pointer dereference

We'll turn it into a source — sink problem.

44

Bug hunt #1: spot the crash

#include <stdio.h>
#include <stdlib.h>

char *read_name(FILE *f){
char *p = malloc(16);
fgets(p, 16, f);
return p;

int main(){
FILE »f = fopen("names.txt","r");
char *s = read_name(f);
printf("%c\n", s[0]1);

}

45

A\ A lhava ~am i+ ~raebh? (et All cmA+=)

Likely crash points

= fopen may return NULL — f null passed to read_name

= s may be NULL if read_name returned NULL (or if it
propagates)

= s[0] deref is a sink

46

Source vs sink (make it a game)

Define:

= Sources: expressions that may produce NULL (e.g., malloc,
fopen, getenv, many APls)

= Sinks: operations requiring non-null *p, p—x, p[i],
memcpy(p, ...), etc.

Goal: detect source — sink flow without check.

47

Taint-style view (null-taint)

We'll use a taint metaphor:
= value is nullable-tainted if it may be NULL
= taint propagates through assignments and returns

= checks may “sanitize’’ (on some paths)

48

Dataflow (toy rules)

On CFG:
= X = malloc(...) — x becomes nullable
= X = y — X nullable if y nullable

= if (x == NULL):
= on true branch, treat x as non-null

= sink x[0] — warn if x may be null on that path

49

Sensitivity (static analysis)

Sensitivity is how much the analysis distinguishes different
situations

= Flow sensitivity
= Path sensitivity
= Context sensitivity

50

Flow sensitivity

Flow sensitivity: distinguishes facts at different program points

Statement order matters!

51

In-class Q7: flow sensitivity

If analysis is flow-insensitive, it:

A) tracks facts per program point

B) ignores statement order (one big soup)
C) always considers paths separately

D) requires SMT solvers

52

Correct: B

Flow-insensitive = ignores order — often much less precise.

53

Path sensitivity

Path sensitivity: distinguishes facts on different branches/paths

Conditions matter!

54

In-class Q8: path sensitivity

Given:
p = malloc(16);
if (p) pl6] = 'A';
A path-insensitive analysis that merges facts will likely:
A) warn
B) not warn

C) crash itself

55

Often A (warn)

Because merging keeps “p may be null"" even inside the guarded
block (depending on tool design).

56

A cleaner null example (with early return)

char *p = malloc(16);
if (!'p) return NULL;
p[e] = 'A';

A path-sensitive analysis should: warn or not?

57

Should not warn at p[0] if it understands that path implies p ==
NULL.

58

Interprocedural challenge

char *mk(){ return malloc(1024 * 1024 * 1024); }
void use(char *q){ q[0] = 'X'; }

int main(){
char *p = mk(); use(p);
}

To warn, the analyzer must connect:

= return value of mk to argument of use

59

Summaries (the key idea)

Interprocedural dataflow often uses function summaries:

= mk: “returns nullable”
= use: “requires non-null q at deref”

Then check call sites.

60

Context sensitivity

Context sensitivity: distinguishes facts under different calling
contexts.

Same function called from different places is analyzed separately!

61

In-class Q9: context sensitivity

Context-insensitive means:

A) different call sites to same function can be distinguished
B) variables have types

C) loops are unrolled

D) AST nodes have parents

62

Correct: A

63

Why this analysis fails

We'll do 4 common ones:
1. aliasing
unknown function semantics (“sanitizers’")

path explosion

B WD

imprecise heap / pointers

64

Failure mode #1: aliasing

malloc(16);
P

char *p

char *q
// complex code that doesn't change p or g

if ('q) return;
p[e] = 'A';

If tool doesn't track aliasing well, it might not realize p and g
share nullness facts.

65

Failure mode #2: “sanitizer’’ functions

void check_not_null(void #*x){
if (!'x) abort();

char *p = malloc(16);
check_not_null(p);
p[e] = 'A';

If tool doesn’t know check_not_null semantics, it may warn
incorrectly.

66

Failure mode #3: path explosion

Many branches cause exponential paths:

if (a) {...} else {...}
if (b) {...} else {...}
if (c) {...} else {...}

Even a great path-sensitive idea can become too slow.

67

Failure mode #4: “unknown’’ libraries/environment

p = get_ptr_from_library();
use(p); // deref inside

If the library contract isn't modeled, analysis is forced to guess:

= assume nullable — false positives
= assume non-null — false negatives

68

Where Al helps (source — sink / null deref)

Al won't magically make the problem decidable. But it can
improve usefulness:

= Learn common sanitizer patterns
= Infer API contracts (nullable vs non-null)
= Rank warnings (triage 10k — top 20)

= Suggest fixes (“add check here")

69

Al help #1: warning ranking (triage)

Given many warnings, prioritize likely true positives using:

= code patterns near sink

historical fixes / repo conventions
= similarity to known bugs

call context features

70

Al help #2: contract inference

Infer this function never returns NULL'' oraborts on
NULL" by:

= analyzing implementation

= learning from usage patterns:

= “everyone checks return value’ — maybe nullable
= “nobody checks'' — maybe non-null or people are wrong

71

In-class Q10: Al often does NOT give...

A) better prioritization
B) learned summaries for wrappers
C) guaranteed soundness

D) better UX

72

